Wordclouds, mathematics and building a better teacher

by | Thursday, February 02, 2017

Wordcloud created from all the words in the wikipedia page for “mathematics education” 

What does a teacher need to know to intelligently integrate technology in their teaching? Or better still, what is it that teachers need to know to become effective teachers? 

So this morning I was playing around with a wordcloud generator. Throwing in words from our notes from the Scottsdale Design day… and I got to thinking about how it could be used as an educational tool, specifically to teach mathematics. 

Now, I know what you are thinking, Wordle’s are so passe´, so yesterday. Everybody (and their uncle) uses them and it’s not clear (at least to me) most of the time what value it is bringing into teaching. So bear with me and let me see if I can explain (a) how it can be used to teach mathematics, or at least some content in mathematics; and (b) what implications it has for teacher education and teacher professional development.

I know there are many wordcloud generation sites out there, but the one I focus on is one created by Jason Davis, and is at https://www.jasondavies.com/wordcloud/ 

So, this morning, I uploaded our notes from the design day into it – and made a Wordle. Actually I made 3. Here they are:

worldcloud-logn

(Wordle 1)

worldcloud-sqrtn

(Wordle 2)

worldcloud-n

(Wordle 3)

Now even though these may look similar, there are important differences, and not just in the placement of the words. The key difference is in relative sizes of the words in the Wordle. For instance, see the relationship between “students” and the word “flexible” in each of them. The word “students” gets larger from Wordle 1 to 3 while “flexible” becomes smaller? Why is that?

Turns out it all depends on a set of choices given by Jason, more specifically as follows:

choiceofscale

Depending on whether you choose log n, sqrt n or n you get different designs. Why the heck is that and why do we care?

So I jumped onto Google and got the graphs for the three functions. You don’t even need a special graphing calculator or software. Google just gives it to you. Here are the graphs:

graphforlogx

graphforsqrtx
graphforx

 As you will see above – the main difference between these three graphs (for logx, sqrtx and x) is how the lines grow and flatten out (or not) loosely speaking. The steeper the line the greater the contrast between the larger and smaller words. In other words as we move from, n to sqrt n and log n the manner in which the words are weighted changes – based on a mathematical formula. The graph for is linear, while those for logx and sqrtx, are non-linear (i.e. not a straight line). In addition the graphs for  logx and sqrtx differ in how they slope as we move away from 0. The graph for logx flattens out faster than the graph for sqrtx. That is just a property of these functions. 

Now imagine if I were to determine the size of words that go in the wordle based on each of the equations. So we let the number of times a word occurs in a text along the x axis. In the case of the the linear graph (y=x) the more times a word pops up the larger its y value would be. However, for the same value of x the the point on the axis for the other two would be different. So in the case of y=x, the difference between the most used word and the least use word would be huge, less so in the case of sqrtx – since it flattens out relatively slowly, compared at least to logx which flattens out the fastest. So here we have a great visual representation of the manner in which these 3 functions behave.

Now imagine a lesson plan that teaches students about such graphs using Wordles. How cool is that, what a wonderful way to show the presence of mathematics in, what is effectively, word counting. Thus an abstract idea of growth and ratios and equations that is mapped out in a relatively concrete manner in a wordcloud.

Now imagine a teacher who can “see” this opportunity, is willing to play and then create a lesson plan.

The point here not about wordclouds – but rather about how we see the world, in this case through a mathematical lens.

Other disciplines will provide different opportunities.

Which brings me to my main point.

That’s the teacher we want to create. That’s about creativity, flexibility, deep knowledge of content and a willingness to play. It is about being opportunistic and always being ready.

The question then becomes – what do WE, as teacher educators and faculty members in a college of teacher education, need to do to create this kind of a teacher? That is our challenge.

In fact, I would argue that this challenge goes beyond technology integration. It is really about helping develop a mindset that is always curious, always seeking new ways to think about content and presenting it to our students.

It is a challenge worthy of effort, and if we won’t do it, who will?  

A few randomly selected blog posts…

Constructing knowledge on the web: New dissertation

I am pleased and proud to announce that Mike DeSchryver recently defended his dissertation, titled: Toward a Theory of Web-Mediated Knowledge Synthesis:  How Advanced Learners Used the Web to Construct Knowledge about Climate Change Behavior This is an excellent piece...

The futures of higher ed with Phoebe Wagner

The futures of higher ed with Phoebe Wagner

The Center for Science and the Imagination at ASU runs a series of short stories and virtual gatherings that explore issues related to transformative change. Essentially they solicit and publish a (super-short) short story that explores “themes of community,...

Interesting TPACK related discussion

Russ Goerend over at Learning is Life has initiated a fascinating discussion on the TPACK framework on his blog. It all revolves around a blog post he titled The force is strong with the shiny one. I shall not seek to summarize the discussion here (please go read it...

Creativity ambigram

Here's a new ambigram I designed at the kick-off for the MSU Creativity Initiative. I will have more information on that in a later post but for now... enjoy. Creativity, any which way you look at it.

Good to be back, SITE 2023 New Orleans

Good to be back, SITE 2023 New Orleans

The Society for Information Technology in Teacher Education conference has been an important part of my professional life for over two decades. My first presentation at a SITE conference was back in 2001 at Orlando, Florida, with none other than Matt Koehler. For the...

Us in Flux: A conversation with Sarah Pinsker

Us in Flux: A conversation with Sarah Pinsker

The Center for Science and the Imagination at ASU has a new series called Us in Flux. Every two weeks they publish a (super-short) short story that explores "themes of community, collaboration, and collective imagination in response to transformative events." They...

Recreating D-Day…

... on a shoe-string budget. Three designers and a big empty beach, see the results! http://www.youtube.com/v/WRS9cpOMYv0

The mysterious pentagon

There are interesting patterns all around us. Here is one I found the other day. We were boiling lentils in a shallow bowl... and then, out of nowhere emerged an almost perfect pentagon! The almost perfect pentagon that showed up on the surface of the boiling lentils!...

WHY: The most important question of all

Why do anything at all? This blog post is a collection of videos and images that I have collected over time that speak to the pointlessness of trying to find an answer to this question and how one question, even if answered, leads to many more. This is the kind of...

2 Comments

  1. Erin Nash

    Punya,
    This post highlights an amazing insight into the presence of math in “word graphing.” Thank you for sharing!

    On a different note, when I taught high school, I changed the method in which my students and I went over our course syllabus. “Going over the syllabus” on day one always seemed incredibly boring, and obviously, my students never seemed highly interested. That is so wrong for our first day of class!

    So, I put our syllabus into Wordle, and students spent time analyzing the word cloud, making inferences, and determining meaning. They then shared with me, and their classmates, what they thought the class was going to involve, as well as the overall themes to our course. Flipping this entire process made it more engaging and student centered.

    Here is a link to they syllabus: https://www.scribd.com/document/338562496/Zoology-Syllabus-Copy
    Here is a link to the word cloud: https://www.scribd.com/document/338562614/Zoology-Syllabus-Cloud1

    Thanks again for sharing!

    Reply
    • Punya Mishra

      Erin, what a cool idea, with the syllabus. I think I am going to try it with a master/doctoral seminar I plan on teaching this summer. It really allows you to criss-cross the landscape of the course and it provides a bird’s eye view of the ideas. The question of course is which scale we should choose (n, sqrt(n) or log(n)). Each of them will provide a different sense of “scale” and prominence of the ideas relative to each other. Another nice pedagogical dilemma. As I have said before, in another context, I prefer the word dilemma to problem, because problems have solutions, while dilemmas have resolutions (implying compromise and judgement).

      Reply

Leave a Reply to Erin Nash Cancel reply

Your email address will not be published. Required fields are marked *